ЧТО ЖЕ В ДВИГАТЕЛЕ Двигатель

Двигатель

Главная страница

 

                                                
 

УЗЛЫ И СИСТЕМЫ АВТОМОБИЛЯ

Двигатель. Двигатель обеспечивает автомобилю движущую силу. Большое разнообразие выпускаемых двигателей отражает многообразие условий эксплуатации, а также типов и размеров автомобилей, на которых они устанавливаются. Двигатель должен быть относительно легким, компактным и пригодным для массового производства. Он должен обладать способностью перемещать автомобиль медленно и быстро на короткие и длинные расстояния. Он должен быть достаточно мощным, чтобы автомобиль мог преодолевать крутые подъемы, обеспечивать высокоскоростное движение по гладким и плоским автострадам, а также достаточную маневренность на городских улицах в условиях частых поворотов, торможений, остановок и троганий с места. Кроме того, автомобильный двигатель должен легко запускаться при любой погоде, работать плавно и тихо, быть достаточно экономичным и функционировать без поломок в течение нескольких лет или, по меньшей мере, на протяжении 100 000 км пробега.

В двигателе создается однородная горючая смесь топлива и воздуха; затем она сжимается, воспламеняется, сгорает и, расширяясь, вызывает перемещение поршня в цилиндре. Поступательное движение поршня преобразуется во вращательное движение коленчатого вала, который – посредством передачи движения на колеса – перемещает автомобиль.

Дизельный двигатель. В четырехтактном двигателе, изобретенном Р.Дизелем в начале 1900-х годов, топливо впрыскивалось непосредственно в цилиндр и воспламенялось теплом сжатия. Это позволило достичь намного больших степени сжатия и давления продуктов сгорания, чем у обычного ДВС с воспламенением искрой, а также уменьшить расход топлива на 2030%, хотя и ценой некоторого увеличения массы конструкции и снижения скорости. В конце 1970-х годов дизельные двигатели стали устанавливать и на легковых автомобилях, хотя прежде они использовались главным образом в грузовиках, автобусах и тракторах.

Топливная система. Одно из главных усовершенствований, введенных в последнее время, касается системы подачи топлива в двигатель. Обычно подача топлива связана с использованием карбюратора – устройства для смешивания топлива и воздуха в таком соотношении (обычно 1 к 1215), чтобы сгорание было достаточно полным. При отходе поршня на такте впуска воздух втягивается в карбюратор, а топливо впрыскивается в воздушный поток. Топливовоздушная смесь затем подается в цилиндры через подогреваемые каналы коллектора, что способствует испарению жидкого топлива. Этот способ приготовления рабочей смеси прост и недорог, однако не позволяет точно установить такой состав смеси, который обеспечивает соблюдение требований к выбросу загрязнений и топливной экономичности. В конце 1970-х годов топливная система с электронным управлением по обратной связи стала вытеснять традиционный всасывающий карбюратор. В этой системе датчик кислорода в выхлопной трубе определяет полноту сгорания, а электронная схема устанавливает оптимальное соотношение топливо/воздух путем перемещения иглы в жиклере. В топливной системе с обратной связью состав топливовоздушной смеси контролируется и регулируется несколько раз в секунду.

Электрооборудование. Современный автомобиль нуждается в мощном электрооборудовании для приведения в действие таких вспомогательных устройств, как радиоприемник, оконные стекла и сиденья с сервоприводом, открывающийся верх, стеклоочистители и вентиляторы системы обогрева. Однако важнейшая функция электрооборудования – привести в действие стартер, который раскручивает вал двигателя, и создать искру, воспламеняющую топливовоздушную смесь в цилиндрах.

В практичных электросистемах автомобиля имеются аккумуляторная батарея для создания начального тока и вращаемый двигателем генератор того или иного типа для зарядки аккумулятора. На большинстве автомобилей устанавливаются 12-вольтовая батарея и генератор переменного тока. Переменный ток преобразуется в постоянный для зарядки батареи. Генератор переменного тока вращается с большей частотой, чем генератор постоянного тока, и поэтому создает больший ток при низкой скорости езды.

Система зажигания. Искра зажигается электронной схемой с использованием магнито-импульсного устройства, частота вращения которого находится в определенном соотношении с частотой вращения коленчатого вала двигателя (это устройство может располагаться даже на маховике двигателя). Магнитный сигнал, генерируемый устройством, преобразуется в электрический, который усиливается транзисторной схемой для установки тока первичной цепи катушки зажигания. На некоторых двигателях устанавливаются двухвыводные катушки зажигания для каждой пары цилиндров, а на других – для каждого цилиндра отдельная катушка, совмещенная со свечой зажигания. Если используется несколько катушек зажигания, то отпадает необходимость в прерывателе-распределителе с его ротором, распределяющим напряжение по свечам, и пучком соединительных проводов. Вся система зажигания умещается в маленькой коробочке без движущихся частей. К каждому цилиндру идет один провод. Существует много способов зажигания. На некоторых автомобилях все еще используются распределители зажигания совместно с магнитным зажиганием искры и электронным управлением моментом ее подачи. Однако общая тенденция современного автомобильного моторостроения состоит в том, чтобы обходиться без механических компонентов с их движущимися и трущимися частями, которые со временем изнашиваются и выходят из строя.

Установка момента подачи искры – важный фактор, влияющий на экономичность и выброс вредных веществ. Когда-то этот параметр определялся исключительно частотой вращения коленчатого вала двигателя и величиной нагрузки. Теперь же для определения его оптимального значения используется большее количество данных. Они поступают от датчиков температуры двигателя, частоты вращения его коленчатого вала, положения дроссельной заслонки, вакуума, содержания кислорода в отработавших газах, включенной передачи (первая, вторая и т.д.) и других параметров. Момент подачи искры затем точно определяется компьютером двигателя. Компьютер может мгновенно отложить подачу искры, если двигатель детонирует. (В некоторых двигателях датчики стука (детонационного горения) устанавливаются на каждом цилиндре.)

Тормозная система. Тормозная система автомобиля основана на трении, которое возникает, когда специальная деталь из фрикционного материала прижимается к металлической поверхности, вращающейся вместе с колесом. Путем трения тормоз преобразует энергию движения автомобиля в тепловую энергию. В тормозе выделяется много тепла, которое должно эффективно поглощаться и рассеиваться. Существуют два основных типа автомобильных тормозов: барабанные и дисковые.

Барабанный тормоз. В барабанных тормозах к ступице колеса прикреплен тормозной барабан. На неподвижном фланце кожуха полуоси или поворотной цапфе закреплен опорный диск, с нижней частью которого соединены две поворачивающиеся колодки, имеющие фрикционные накладки на внешней поверхности. Нижние части колодок связаны между собой, а верхние снабжены пружиной, оттягивающей их от барабана, когда тормоз не используется. Колодки при торможении прижимаются к внутренней поверхности барабана с помощью гидравлического разжимного устройства. При нажатии ногой на педаль тормоза шток перемещает поршень главного цилиндра, который давит на тормозную жидкость. Жидкость по трубопроводам и шлангам передает давление колесным цилиндрам, воздействует на поршни и, перемещая их, прижимает колодки к тормозным барабанам. Объединенное действие рычага педали и гидравлического давления позволяет многократно усиливать давление водителя на педаль. Силы давления на педаль в 0,45 кН достаточно для торможения всех четырех колес.

Барабанные тормоза просты и недороги и не требуют больших управляющих усилий. Их серьезный недостаток – не очень эффективное рассеяние тепла, поскольку фрикционные накладки находятся внутри барабана. К тому же чрезмерный нагрев может привести к деформации барабана, вследствие чего прилегание накладок к нему становится неравномерным. Нагрев накладок и неравномерное прилегание снижают тормозящее действие при многократном использовании тормозов. Применение оребренных алюминиевых барабанов, более широких и длинных накладок, усиленных недеформирующихся барабанов и металлизованных накладок, не подверженных действию перегрева, частично решает проблему постепенного уменьшения тормозящего действия.

Дисковый тормоз. Дисковый тормоз состоит из плоского диска, который вращается вместе с колесом, и жестко закрепленной скобы, охватывающей диск. На скобе может находиться от одного до четырех гидравлических цилиндров с поршнями, которые прижимают колодки из фрикционного материала к диску. У скоб некоторых типов имеются цилиндры на обеих сторонах; скобы других типов снабжены плавающими поршнями только на одной стороне, прижимающими цельную колодку с обеих сторон диска. Поршни приводятся в действие ножной педалью через главный цилиндр, как и в барабанных тормозах.

Дисковые тормоза рассеивают тепло намного лучше, чем барабанные. Сам диск открыт для доступа атмосферного воздуха; скоба тоже открыта и легко охлаждается. Снижения тормозящего действия практически не происходит. Дисковые тормоза, как правило, не могут сами усиливать свое действие; поэтому водителю легче создавать максимальное тормозящее действие, когда колеса близки к движению юзом, но тормоза еще не блокируются.

Недостатки дисковых тормозов – высокая стоимость, необходимость в усилителе того или иного типа, чтобы восполнить отсутствие самоусиления, и потенциально более быстрый износ фрикционных накладок из-за большего давления при торможении.

 

                                     

 
Сайт создан в системе uCoz
Rambler's Top100